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ABSTRACT The ultrastructure of spindle formation during the first meiotic division in oocytes 
of the Strepsipteran insect Xenos peckii Kirby (Acroschismus wheeleri Pierce) was examined in 
serial thick (0.25-~m) and thin sections. During late prophase the nuclear envelope became 
extremely convoluted and fenestrated. At this time vesicular and tubular membrane elements 
permeated the nucleoplasm and formed a thin fusiform sheath, 5-7 ~m in length, around 
each of the randomly oriented and condensing tetrads. These membrane elements appeared 
to arise from the nuclear envelope and/or in association with annulate lamellae in the nuclear 
region. All of the individual tetrads and their associated fusiform sheaths became aligned 
within the nucleus subsequent to the breakdown of the nuclear envelope. Microtubules (MTs) 
were found associated with membranes of the meiotic apparatus only after the nuclear 
envelope had broken down. Kinetochores, with associated MTs, were first recognizable as 
electron-opaque patches on the chromosomes at this time. The fully formed metaphase 
arrested Xenos oocyte meiotic apparatus contained an abundance of membranes and had 
diffuse poles that lacked distinct polar MT organizing centers. 

From these observations we conclude that the apparent individual chromosomal spindles-- 
seen in the light microscope to form around each Xenos tetrad during "intranuclear prometa- 
phase" (Hughes-Schrader, S., 1924, J. Morphol. 39:157-197)--actually form during late pro- 
phase, lack MTs, and are therefore not complete miniature bipolar spindles, as had been 
commonly assumed. Thus, the unique mode of spindle formation in Xenos oocytes cannot be 
used to support the hypothesis that chromosomes (kinetochores) induce the polymerization 
of their associated MTs. Our observation that MTs appeared in association with and parallel 
to tubular membrane components of the Xenos meiotic apparatus after these membranes 
became oriented with respect to the tetrads, is consistent with the notion that membranes 
associated with the spindle determine the orientation of spindle MTs and also play a part in 
regulating their formation. 

In oocytes of the insect Xenos peckii Kirby (Acroschismus 
wheeleri Pierce; 4) the first meiotic spindle, in specimens fixed 
and sectioned for light microscopy, appears to arise within 
the nucleus from the collocation of eight randomly oriented 
miniature spindles, each of which initially forms in association 
with a single tetrad (16). This unique manner of spindle 
formation has been cited, through the years, as evidence to 
support the argument that chromosomes themselves can or- 
ganize a functional bipolar spindle in the absence of extra- 

chromosomal organizers (32, 43, 45, 47), that spindle bipo- 
larity is established by the kinetochores (43), and that chro- 
mosomal spindle fibers have a tendency to fuse (2). Indeed, 
more recently Hughes-Schrader's (16) observations on Xenos 
have even been extrapolated to indicate that kinetochores 
form their own fibers by nucleating microtubules (MTs~; 7- 

Abbreviations used in this paper. MA, meiotic apparatus; MTs, 
microtubules; NE, nuclear envelope. 
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9, 28, 30, 32, 43, 47, 53). 
Important suppositions from early light microscopic obser- 

vations of fixed material should not be accepted at face value, 
a point that is amply illustrated in Kubai's (24) recent inves- 
tigation of the monopolar spindle in Sciara spermatocytes. 
Her ultrastructural analysis of this unique system disproved 
the widely accepted light microscopic conclusion that ana- 
phase chromosomes can move away from the pole to which 
they are connected. Her results forced "a complete reevalua- 
tion of chromosome behavior" in Sciara spermatocytes, and 
illustrate that much effort can be spent attempting to incor- 
porate into a cohesive mitotic framework erroneous interpre- 
tations of exceptional light microscopic observations. In this 
respect the significant inferences drawn from Hughes-Schrad- 
er's (16) unique observations on Xenos also remain unproven 
(29, 32) since the first meiotic oocyte division in this elusive 
organism has yet to be examined at the ultrastructural level. 
Indeed, the most important conclusion drawn from her study, 
that the chromosomal spindle fiber may arise "entirely 
through the activity of the kinetochore alone" (45) remains 
controversial (34, 41, 49). These considerations prompted us 
to conduct a thorough ultrastructural examination of the first 
meiotic division in Xenos oocytes. 

Our results demonstrate that the first meiotic oocyte divi- 
sion in Xenos is unique in that an elaborate intranuclear 
fusiform sheath, composed of tubular and vesicular mem- 
brane elements, formed in association with each individual 
tetrad during late prophase. These membranous sheaths 
formed and became aligned parallel within the nucleus, in the 
absence of MTs. Kinetochore and nonkinetochore spindle 
MTs were found associated with these existing parallel arrays 
of membrane elements only after the nuclear envelope (NE) 
had broken down. It can be concluded from these observa- 
tions that chromosomal spindle fibers do not form in Xenos 
oocytes as commonly inferred from Hughes-Schrader's (16) 
light microscopic observations. 

MATERIALS AND METHODS 

S o m e  no tes  on Xenos: The strepsipteran Xenos peckii Kirby (Ac- 
roschismus wheeleri Pierce; 4) is an obligate parasite of Polistes fuscatus 
Fabricius, the common paper wasp. Both the parasitic insect and its host are 
distributed throughout temperate North America (4, 5); the parasitized wasps 
(termed "stylopized") have been recorded in most Northeastern states as well 
as Alabama, California, Indiana, Maryland, Michigan, Ohio, and Texas (16, 
18, 23, 35, 36). OtherXenos species have been collected from various wasps in 
the family Vespidae in Europe, South America, Africa, and Asia (e.g. 3, 21, 22, 
26). 

Most of what is known of the biology of X. peckii has been described by 
Hughes-sehrader (16). As is generally true in the Strepsiptera, development 
takes place entirely within the abdominal cavity of the host (1). The minute 
male pupates in a cylindrical case that protrudes slightly through the wasp's 
sclerites; upon emergence the adult flies off to search for females. In contrast, 
the female does not pupate, and, as an adult, lacks wings, legs, and eyes. She 
remains within the wasp, eventually permanently exserting her white cephalo- 
thorax through the host's sclerites. Mating does not occur until 4 or 5 d after 
the first exsertion, by which time the cephalothorax has become darkly pig- 
mented. It is also at this time that the interphase eggs undergo meiotic 
maturation. Eggs that reach the first meiotic metaphase degenerate after 10-14 
d if not fertilized. 

Collection: Parasitized P. fuscatus were collected in early September 
on blooming goldenrod in Ithaca, New York, and at weekly intervals from 
early September to mid-October from nests in East Greenbush, New York. A 
stylopized wasp can be identified with the naked eye by the fairly conspicuous 
asymmetric bulge in its abdomen, formed by either a male pupal case or an 
exserted female cephalothorax. MuRiple Xenos in a single host are common. 

The 37 stylopized wasps collected yielded a total of 76 male pupal cases-- 
from which most of the males had already departed--and 28 female Xenos, 21 

of which had exserted the cephalothorax. The degree of pigmentation of the 
cephalothorax provided a rough estimate of the time since exsertior,. 

Preparation and Fixation: Each gmvid female parasite was found to 
contain 500-1,000 eggs (~80% of her body mass; 6), which could be easily 
liberated from the body cavity by simply teasing the parasite apart in fixative 
(or in insect culture medium). According to Hughes-Schrader (16) all of the 
eggs from any one female Xenos are in approximately the same stage of 
development. Unfortunately, the compound structure, large size, and amount 
of associated yolk of the Xenos egg, along with the diminutive size of the 
meiotic apparatus (MA) and chromosomes, prohibited any in vivo examination 
of the meiotic process. In fact, it was seldom possible to distinguish interphase 
from meiotic eggs prior to sectioning. Thus our approach was to collect, fix, 
and flat-embed on a single coverslip all the eggs from a particular female that 
had exserted her cephalothorax, and to make embeddings from as many such 
females as practical throughout the collection period. One or two eggs could 
later be cut from each of the embeddings to determine the approximate stage 
of the eggs from each female. 

Gravid female parasites with lightly-to-heavily pigmented cephalothoraxes 
were teased apart directly into a 50:50 mixture of 4.5% glutaraldehyde and 2% 
OsO4, each in 0. l M PO4 buffer (pH 7.1; 18"C) made up immediately prior to 
use (the final initial concentrations of glutaraldehyde and osmium were 2.25% 
and 1%, respectively). A glutaraldehyde/osmium fixation protocol (12, 38) was 
chosen because we found during the preliminary stages of this study that it 
preserved MTs and membranes within the MA of the mature metaphase- 
arrested Xenos egg. The liberated eggs, which are heavier than the remaining 
cellular debris, quickly sank to the bottom of the petri dish containing the 
fixative. After 90 min the eggs were transferred by pipetting into a 15-ml 
polystyrene centrifuge tube containing dH20 and loosely pelleted by gentle 
centrifugation. They were then resuspended two more times in two changes of 
dH20, dehydrated in a graded series of ethanols, and flat-embedded in Polybed 
812 (Polysciences, Warrington, PA) on 24 x 60-mm glass coverslips. 

The glass coverslip embedding substrate was removed from the embedded 
eggs by a brief treatment with 4°C hydrofluoric acid (as in 40). The embedded 
eggs were then examined within the plastic by phase-contrast microscopy, and 
suitably oriented eggs were marked with a diamond objective scribe. Marked 
eggs were then excised from the embedment, mounted on EPON pegs, and 
serially thick- (0.25- #m) or thin-sectioned as described by Rieder (39). The 
0.25-jzm thick sections proved very practical for this study, since an egg could 
be completely sectioned in ~350 sections (vs. the 1,000 or more required for 
a conventional uitrathin section electron microscopic study). In addition, once 
mounted on slot grids, the ribbons of 0.25-~tm thick sections could be quickly 
prescreened for the presence of the egg nucleus or MA with phase-contrast light 
microscopy before or after staining with uranyl acetate and lead citrate (see 
42). 

Since Xenos eggs have been reported to develop synchronously in any one 
female (see above), one or two initial eggs were cut from each of the 15 
embeddings to determine the approximate stage of the eggs from each female. 
Additional eggs were sectioned from the four embedments that contained eggs 
in various meiotic stages. A total of 19 eggs were examined, each in serial 
sections, from these four embedments. 

Electron Microscopy:  Serial thin sections were examined at 80 kV 
with a Philips 300 electron microscope equipped with a goniometer stage and 
a 70-#m objective aperture. However, the great majority of data for this study 
was obtained by viewing serial 0.25-#m thick sections with the New York State 
Department of Health 1.2-MeV high voltage electron microscope, operated at 
800-1,000 kV, and employing an objective aperture of 30-#m. All electron 
micrographs included herein are of 0.25-#m thick sections. 

RESULTS 

Salient Features of Hughes-Schrader's 
Observations on Spindle Formation in 
Xenos Oocytes 

A brief description of Hughes-Schrader's (l 6) observations 
concerning spindle formation in Xenos oocytes is necessary, 
not only to understand our results, but also so that the reader 
may appreciate the correlation between her light microscopic 
observations and our ultrastructural data. Fig. l presents 
selected camera lucida drawings, reproduced from her original 
text, showing the unique method of spindle formation during 
the first meiotic (maturative) division of the egg. These draw- 
ings are of 5-um-thick iron-haematoxylin-stained paraffin 
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sections cut through the nucleus from eggs preserved in 
Kahle's fixative (5% formic acid, 0.2% acetic acid, and 24% 
ethanol). 

According to Hughes-Schrader (16), eight condensations of 
the chromatin appear within the nucleus during prophase 
(Fig. I A). These condensing tetrads are positioned at the 
periphery of the nucleus and are surrounded by a clear zone. 
As "prometaphase" is initiated a fusiform body of nebulous 
material forms in association with the clear zone of each 
tetrad (Fig. 1 B). At this time "the nuclear membrane collapses 
and becomes wrinkled and difficult to trace definitely" (16). 
During early "prometaphase" the eight tetrads and their fusi- 
form sheaths may lie in any plane within the nucleus and 
show no common orientation. When the formation of the 
sheaths is well advanced the nuclear membrane reasserts itself, 
i.e., it appears to shrink and tighten up around the fusiform 
bodies (Fig. 1 C). As this process continues the fusiform 
sheaths and their associated tetrads become aligned in a 
"metaphase" arrangement within the nucleus (Fig. 1D). The 
nuclear membrane then dissolves (Fig. l E) and the fusiform 
bodies comprising the spindle "acquire a very constant and 
characteristic arrangement" (16; Fig. IF). No further mor- 
phological changes occur in the metaphase-arrested MA until 
fertilization. 

ULTRASTRUCTURAL ANALYSIS OF SPINDLE 
FORMATION IN XENOS OOCYTES 

Late Interphase 
Xenos eggs are broadly oval ( ~  100 ttm long; 60-70 ~m 

wide) and slightly attenuated at one pole. Light and electron 
microscopy of thick and thin sections reveals that each defin- 
itive egg is encased in two distinct "envelopes." The inner 
envelope surrounds the yolk, egg nucleus, and cytoplasm and 
has been referred to as a chorion (6). The chorion is sur- 
rounded by numerous nurse cells that are in turn encased in 
a second, looser egg envelope formed by an epithelial cell 
layer which is thought to be derived from the follicular 
epithelium of the early egg tubules (16). 

The late interphase Xenos egg nucleus is found at the 
periphery of the egg cytoplasm near the chorion, which is 
disrupted in the immediate vicinity of the egg nucleus. At this 
time the nucleus is roughly spherical and ,~20-25-~m diam. 
Ultrastructural analysis reveals that it contains an extremely 
fine reticulum of chromatin threads enclosed in a porous NE 
which consists of the usual (inner and outer) nuclear mem- 
branes. Numerous slender membrane protrusions, which rep- 
resent folds of the inner nuclear membrane, extend for varying 
distances into the nucleus (data not shown; see below). That 
part of the egg nucleus closest to the disrupted chorion is 
embedded in a fine but dense cytoplasmic ground substance 
that contains numerous mitochondria and annulate lamellae 
with associated membrane-bounded vesicles (data not shown). 

Prophase (10 Nuclei Reconstructed) 
The early prophase egg nucleus resembles that of the late 

interphase egg nucleus, with the notable exception that the 
nucleus contains eight condensing tetrads (Fig. 2). Each of 
these tetrads is located at the periphery of the nucleus and is 
surrounded by a clear zone relatively free of chromatin (Fig. 
2; also Fig. 1A). A reconstruction from serial sections revealed 
that each condensing tetrad is associated with one or more of 
the membrane projections that arise from the inner mem- 
brane of the NE (Fig. 2). Numerous aggregates of membrane- 
bounded vesicles, similar to those seen associated with annu- 
late lamellae of late interphase oocytes, can be seen at or near 
the vicinity of the NE (Fig. 2, arrows). The annulate lamellae, 
characteristically seen in late interphase oocytes, were no 
longer found in the cytoplasm of eggs containing prophase 
nuclei. 

Oocyte nuclei, classified as being in early (Fig. 1 B), mid 
(Fig. I C), or late (Fig. I D) "prometaphase" by Hughes- 
Schrader (16), were, in reality, determined to be in mid-late 
prophase since the NE remained largely intact and no evi- 
dence of spindle formation could be found. These nuclei were 
invariably found near the chorion, which remained disrupted 
in the vicinity of the nucleus until metaphase (see below). 
Numerous small membrane-bounded vesicles were seen sur- 
rounding each mid-late prophase nucleus (Figs. 3-5), espe- 
cially that part opposite the disrupted chorion (Fig. 4). 

During mid-prophase (i.e., that stage corresponding to Fig. 
1 B) the NE appears extremely convoluted and contains nu- 
merous fenestrae, some as large as 1.0-t~m diam (Fig. 3, 
arrows; also Figs. 4 and 5). Small membrane-bounded vesicles 
were frequently seen within these fenestrae. At this time the 
tetrads were nearly spherical and ~ 1-2-gm diam. Each is 
surrounded by an electron-translucent zone of variable width, 
which contains fine strands of chromatin (Fig. 3B). The 
electron-translucent zone surrounding each tetrad is, in turn, 
surrounded by a thin sheath of elongated tubular and spherical 
membrane elements, the latter of which also permeate the 
remainder of the nucleoplasm (Fig. 3). These fusiform mem- 
branous "chromosomal sheaths" were 5-7 ~m long and 1.5- 
2.5 um wide. The fusiform appearance of each sheath arose 
from numerous parallel-oriented tubular membrane ele- 
ments, some as long as 1.0 ~m, which curve around the clear 
zone associated with each tetrad and then taper toward focal 
points distal to the chromosome. These focal points lack any 
distinguishing ultrastructural features (e.g., Fig. 3B). During 
this stage the tetrads were scattered randomly within the 
bounds of the convoluted NE and the long axes of the 
individual chromosomal sheaths showed no common orienta- 
tion. Kinetochores, if present, cannot be distinguished from 
the chromatin of the chromosome. No MTs are seen in serial 
thin or thick sections of these nuclei, regardless of the mag- 
nification (e.g., Fig. 3 B). 

FIGURES 1 and 2 Fig. 1: Camera lucida drawings of Xenos oocyte nuclei, reproduced from Hughes-Schrader (16), showing the 
various stages of spindle formation during the first meiotic division. (A) Prophase, (B) early-"prometaphase," (C) mid-"prometa- 
phase," (D) late-"prometaphase," (E-F) metaphase. Reproduced by permission of Alan R. Liss, Inc. Fig. 2: Survey electron 
micrograph of a section through an early prophase Xenos oocyte nucleus. Three of the eight tetrads are caught in the plane of 
the section. The arrows denote aggregates of membrane-bounded cytoplasmic vesicles. Note the numerous intranuclear 
membrane projections of the NE and their association with the condensing tetrads. The disrupted chorion, not pictured, is at the 
left. Bar, 4.0/~m. x 6,500. 
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Attempts to find nuclei in earlier stages of mid-prophase, 
during which some of the tetrads were not surrounded by 
membrane sheaths, were unsuccessful. Apparently, this situ- 
ation was also encountered by Hughes-Schrader (16), since 
her earliest pictured "prometaphase'nucleus (Fig. 1 B) shows 
sheath material associated with every chromsome. This would 
seem to indicate that the formation of the sheaths occurs very 
quickly, relative to the remainder of prophase. A careful 
inspection of serial sections through mid-prophase nuclei 
reveals areas free of chromosomes which are also relatively 
free of membrane elements (e.g., Fig. 3A, asterisks). This 
suggests that the membrane elements become localized first 
around the chromosomes and later fill the remaining nucleo- 
plasm. 

Oocyte nuclei judged to be in a later stage of mid-prophase 
(Fig. 4; corresponding to Fig. 1 C) are similar to those de- 
scribed above, with the following exceptions: (a) Although the 
NE was still convoluted in certain areas, there exists an 
impression from serial sections that it is less convoluted than 
in earlier mid-prophase nuclei (data not shown). (b) The 
electron-translucent zone, which separates the tetrad from its 
associated membrane sheath, is diminished in size (cf., Figs. 
3 and 4). (c) A reconstruction of these nuclei from serial 
sections indicates that the long axes of most of the chromo- 
somal sheaths are oriented nearly parallel to one another (e.g., 
Fig. 4). As in earlier stages of mid-prophase, the NE was 
fenestrated, kinetochores could not be distinguished from the 
chromatin, and no MTs were present. 

Late prophase nuclei (those corresponding to Fig. 1 D) were 
13-15-um diam at their widest point. All of the chromosomal 
sheaths are near the middle of the nucleus, and all are oriented 
in the same direction. Sections through the middle of these 
nuclei, cut perpendicular to the long axis of the chromosomal 
sheaths, show most of the tetrads in the same section (Fig. 5). 
The NE remains somewhat convoluted but distinctly less so 
than in mid-prophase, and it is still fenestrated (Fig. 5, arrow). 
In cross-sections the tubular membrane components com- 
prising the chromosomal sheaths appeared circular in profile 
and were difficult to differentiate from the vesicular mem- 
brane elements of the surrounding nucleoplasm. MTs and 
kinetochores are conspicuously absent from these nuclei 
(Fig. 6). 

Metaphase (Five Nuclei Reconstructed) 
As noted by Hughs-Schrader (16), the NE breaks down in 

;(enos oocytes sometime after the tetrads and their associated 
fusiform sheaths have become aligned within the nucleus (cf. 
Figs. 1, D and E; 5 and 8). The MA is then found attached to 
the chorion, which has reestablished itself (Figs. 7 and 8; [6, 

16]). In longitudinal sections the MA appeared broadly fusi- 
form and was 10 tzm wide and 12 um long. At this time 
individual chromosomal sheaths could not be differentiated 
from the additional membrane elements within the spindle. 
Kinetochores are now found to be associated with each tetrad, 
and these stain more electron-opaque than does the remainder 
of the chromosome (Figs. 7 and 8). Each tetrad is surrounded 
by a thin electron-translucent zone that is expanded in the 
kinetochore region (Fig. 7). 

The fusiform appearance of the metaphase MA arose pri- 
marily from tubular membrane elements oriented roughly 
parallel to the long axis of the spindle. These elements appear 
to gently converge toward a diffusely defined polar area (cf. 
Figs. 1 E and 7). An examination of serial sections through 
these metaphase spindles revealed 3-5 large membrane whorls 
(e.g., Fig. 7 B asterisk and inset) which are usually, but not 
always, located in the vicinity of the polar areas. The polar 
areas were diffuse and contained no discrete polar organelles 
(centrioles, plaques, etc.) or electron-opaque aggregates of 
material, as found in the MA of mouse oocytes (48). 

MTs could be seen in the thick longitudinal sections of 
Xenos metaphase spindles, but the overall density of the 
spindle caused by overlapping membranes makes it difficult 
to unequivocably identify them as MTs. They are, however, 
clearly visible in thinner longitudinal sections and in thick 
cross-sections of these spindles (Fig. 8). An examination of 
such sections revealed that these spindles contain both kinet- 
ochore and nonkinetochore MTs (Fig. 8, left inset). These 
MT appear scattered among, but not within, the membrane 
components of the spindle. 

Sections cut perpendicular to the long axis of the metaphase 
MA revealed that the spindle boundary, as defined by the 
distribution of MTs (Fig. 8, large arrowheads), is surrounded 
by a thick layer of densely packed membrane elements from 
which MTs are largely excluded. Thus the spindle, containing 
the tetrads, membrane elements and MTs is ensheathed in an 
additional layer of membrane, and this spindle-membrane 
sheath boundary is very distinct (Fig. 8). Numerous 60-80- 
nm-diam electron-opaque deposits of an amorphous material 
are seen within the membrane region which ensheathes the 
spindle proper (Fig. 8, asterisks). This material, seen at high 
magnification (data not shown), was localized at the focal 
apex where radial arrays of elongated vesicular membrane 
elements converged. 

DISCUSSION 

On the whole, our ultrastructural observations correlate ex- 
tremely well with Hughes-Schrader's (16) classic light micro- 

FIGURES 3 and 4 Fig. 3: (A) Survey electron micrograph of a section through the mid-region of a mid-prophase Xenos oocyte 
nucleus. Three tetrads, each one surrounded by a clear zone and an associated membranous sheath, are pictured. Note that the 
long axis of each sheath differs in its orientation within the nucleus. The extremely convoluted NE, with fenestrae (e.g., arrows), 
is a characteristic feature of mid-prophase nuclei (cf. Fig. 1B). Areas that are relatively free of membrane elements are noted by 
the asterisks. (B) A mid-prophase tetrad and its associated membrane sheath. Note the absence of MTs. Bar, 3.0 ~tm. x 8,800 (A); 
Bar, 2.0 ~m. x 15,175 (B). Fig. 4: Electron micrograph of a section through the middle of a mid-prophase Xenos oocyte nucleus 
which is at a later stage (cf. Fig. 1 C) than that pictured in Fig. 3. The NE is less convoluted than that in Fig. 3, a smaller clear zone 
surrounds each tetrad, and the membrane sheaths of the four pictured tetrads are oriented along a similar axis. Bar, 3.0 ~m. x 
10,500. 
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scopic observations concerning the unique method of spindle 
formation during the first meiotic division in Xenos oocytes. 
The intranuclear fusiform sheaths which she observed to form 
in association with each tetrad are clearly evident in our 
electron micrographs of 0.25-tzm thick sections. The fact that 
they do not appear to be as well defined as those drawn by 
Hughes-Schrader is undoubtedly due, at least in part, to her 
choice of fixative, stain, and 5-gm section thickness. Kahle's 
fixative, containing a high percentage of ethanol, would be 
expected to artificially increase the definition of each sheath 
due to its coagulent action. Furthermore, iron haematoxylin 
(which was used by Hughes-Schrader because of its affinity 
for chromosomes) only lightly stained the sheath material 
against the background nucleoplasm--a fact that is men- 
tioned in her text but not readily apparent from her drawings. 

Our ultrastructural study has revealed additional important 
information concerning spindle formation in this organism. 
Specifically, we found that the intranuclear fusiform sheaths 
associated with each tetrad were devoid of MTs and consist 
primarily of short, parallel tubular membrane elements. The 
lack of MTs in these sheaths is, in fact, consistent with 
Hughes-Schrader's (16) observation that "from their earliest 
appearance the fusiform sheaths of the tetrads show no trace 
of fibrillar structure." It is also consistent with our observation 
that the tetrads in Xenos oocytes lacked well-defined kineto- 
chores until after the NE broke down. Because our simulta- 
neous glutaraldehyde-osmium fixation protocol preserved 
spindle MTs and kinetochores in fully formed metaphase- 
arrested Xenos oocytes, we are confident that it would also 
have preserved these structures, if present, in these early 
division oocytes. Therefore, an important conclusion of our 
study is that the long-standing assumptio n that the intranu- 
clear fusiform sheaths associated with each Xenos tetrad 
contain MT and represent miniature bipolar spindles (32, 43, 
45, 47) is erroneous. This assumption has been used to support 
the notion that chromosomes can form a spindle without 
reference to any extrachromosomal MT organizers (32, 45, 
47)--i.e., that individual spindle fibers (MT) are formed from 
the kinetochore (8, 9, 28) and that these organelles contribute 
substantially to forming and organizing the spindle (27, 29, 
30, 53). While there can be little doubt that kinetochores 
function to organize their associated fibers (regardless of the 
mechanism by which they acquire MTs), and while this 
contributes to the overall organization of the spindle, it re- 
mains to be clearly demonstrated that kinetochores them- 
selves can form a functional bipolar spindle in the absence of 
extrachromosomal MT organizers or preformed MTs. Thus, 
Hughes-Schrader's (17) early observations on the meiotic 
prometaphase in Coccids, which have also been taken by 

others (45) to indicate that kinetochores alone can independ- 
ently organize a spindle, should be interpreted with care. Both 
the kinetochores and the polar areas in these organisms are 
diffuse and her original observations lack ultrastructural con- 
firmation. While it is possible that the kinetochores on the 
Xenos tetrads nucleate their associated MTs, it is equally 
possible that they attach to MTs that form along existing 
parallel arrays of membrane sheath elements immediately 
after NE breakdown (see below). It should be noted that the 
latter possibility also offers a satisfactory explanation for the 
origin of the nonkinetochore spindle MTs in the absence of a 
well-defined polar microtubule organizing center. 

Our ultrastructural observations suggest that the membrane 
elements that permeate the nucleus and form the fusiform 
sheath around each Xenos tetrad originate from the NE. 
However, the data are consistent with at least two possible 
alternative pathways: (a) These elements may arise from 
blebbing of the outer nuclear membrane as annulate lamellae 
form during late interphase (19) and then later invade the 
fenestrated nucleus as the annulate lamellae disperse during 
prophase, and/or (b) these membrane elements may arise 
inside the nucleus by blebbing from protrusions of the inner 
nuclear membrane which appear to be associated with the 
condensing tetrads. The key meiotic prophase event, which 
might resolve this question, appears to occur very quickly (see 
Results) and was not encountered in our study. However, 
either of the above mechanisms could ultimately produce the 
extremely convoluted and fenestrated NE characteristically 
seen in mid-late prophase Xenos oocyte nuclei. 

Some of our observations may be relevant with respect to 
the mechanism by which the membrane components within 
the nucleus become aligned to form a distinct sheath around 
each tetrad. The short tubular membrane elements that form 
these sheaths appeared to arise near each tetrad from fusion 
of the more numerous and smaller vesicular components 
which permeated the nucleoplasm. This impression is based 
on the fact that these tubular elements were seen only in the 
vicinity of the chromosomes and that, as a rule, the volume 
of any individual tubular membrane component appeared to 
be greater than the volume of any individual vesicle within 
the nucleoplasm. The random orientation of the long axes of 
these sheaths during mid-prophase, and their intimate asso- 
ciation with each tetrad, suggests that the tetrads themselves 
play a role in orienting these membrane elements. In this 
respect it is possible that this process was directed, in part, by 
membrane-chromatin interactions within the clear zone sur- 
rounding each tetrad. 

We found that the long axes of the fusiform sheaths that 
form around each Xenos tetrad were initially oriented ran- 

FIGURES 5 and 6 Fig. 5: Survey electron micrograph of a section through a late prophase Xenos oocyte nucleus at a stage similar 
to that pictured in Fig. 1D. The MA is cross-sectioned near its middle, and seven of the eight tetrads (as determined from serial 
sections) are caught in the plane of the section. Note that all of the membrane elements surrounding the tetrads appear circular 
in profile. Many of these are in reality cross-sections of tubular membrane elements (cf. Figs. 3 and 4) that form the sheath around 
each tetrad. There are no MTs within this nucleus (see Fig. 6: cf. Fig. 8). Arrows indicate obvious disruptions in the NE. Bar, 3.0 
~.m. x 11,500. (Inset) A phase-contrast light micrograph of this nucleus (arrow) within an adjacent section, x 870. Fig. 6: Sections 
2, 4, 5, 7-10, 12, and 14, respectively, of a serial series through chromosome 1 in the late prophase nucleus pictured in Fig. 5. 
Note the absence of kinetochores and MT (cf. Fig. 8). Bar, 1.0 #m. x 17,500. 
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domly with respect to each other, but that they became aligned 
parallel within the nucleus prior to the breakdown of the NE. 
This is consistent with Hughes-Schrader's (16) observations 
that suggest that a "metaphase-like" alignment of tetrads is 
reached in Xenos oocytes prior to NE breakdown. However, 
our results show that this intranuclear alignment of tetrads 
occurred during late prophase in the absence of spindle MTs. 
Therefore this process cannot be considered analogous to true 
prometaphase congression as commonly inferred from 
Hughes-Schrader's observations. Although the mechanism 
that generates this parallel alignment of chromosomal sheaths 
is unknown, there are several possibilities. It may be that one 
of the ends of each sheath is attached directly (or indirectly 
by additional membrane) to the inside of the NE and that 
forces generated at the surface of the NE lead to this align- 
ment. This mechanism is suggested by Hughes-Schrader's (16) 
observation that the inner apices of the fusiform bodies ap- 
proach a common point during this process, while at the same 
time their outer ends show varying degrees of divergence (Fig. 
1 D). Although speculative, this hypothesis draws support 
from those observations which indicate that pores within the 
NE can undergo an MT-independent "capping" (50) and that 
colcemid-insensitive prophase chromosome movements oc- 
cur in crane fly spermatocytes in association with the NE 
(25). A possible alternative mechanism for this alignment, 
which also involves the NE, is suggested by the following 
observations of Hughes-Schrader (16): (a) "At all times each 
fusiform body maintains its form perfectly and seems quite 
rigid in its movements through the nucleoplasm," and (b) 
"After the formation and elongation of the fusiform bodies 
are well advanced, a change comes over the nucleus ... the 
nuclear membrane seems to shrink and tighten up around 
the fusiform tetrad sheaths . . . .  " On the basis of her observa- 
tions, and our observation that MTs were absent and therefore 
not involved in the alignment process, one can postulate that 
all of the sheaths and their associated tetrads became passively 
aligned within the nucleus from forces generated by a shrink- 
ing nuclear boundary. Such a mechanism, working alone or 
perhaps in combination with a tendency for chromosomal 
sheaths to interact laterally, would generate the metaphase- 
like alignment of tetrads characteristically seen in these late 
prophase oocytes. 

MTs first appear associated with the tetrads and membrane 
components of the Xenos MA after the NE has broken down 
and at this time they are oriented parallel to the tubular 
membrane components defining the long axis of the spindle 
(e.g., Fig. 7). The formation of spindle MTs in Xenos oocytes 
correlates with the formation of MT-containing cytasters in 
the cytoplasm of these eggs (C. Rieder, unpublished observa- 
tions). Membrane-bounded vesicles indistinguishable from 
those in the spindle are associated with these cytasters. The 

MT focal points of both the cytasters and the diffusely defined 
spindle poles lack a well-defined microtubule organizing cen- 
ter but contain an abundance of vesicles. There are a growing 
number of reports in the literature (reviewed in 14 and 33) 
showing that spindle (and other types of) MTs appear to be 
closely associated with and parallel the course of membranes. 
It has been suggested that membranes associated with the MA 
promote MT formation by functioning in a manner analogous 
to that of the Ca++-sequestering sarcoplasmic reticulum of 
muscle (11, 13), and this concept has recently gained some 
experimental support (20, 44, 46, 51, 54). If the membranes 
associated with the metaphase Xenos MA do regulate MT 
assembly/disassembly, then the oriented tubular components 
of the chromosomal sheaths may act, after NE breakdown, as 
a scaffold not only for generating spindle bipolarity but also 
for establishing spatial relationships between the MT com- 
ponents of the spindle. 

The metaphase-arrested)(enos oocyte spindle is surrounded 
by a thick layer of vesicular membrane elements from which 
MTs are largely excluded. The structural integrity of this 
membranous layer appears to be based in part on deposits of 
an electron-opaque material (glue?) which are localized at the 
focal apex where radial arrays of these membrane components 
converge. The membrane elements comprising this sheath are 
indistinguishable from and are intimately associated with the 
membranous components within the spindle proper. A simi- 
lar but less elaborate membrane system, thought to be derived 
from the NE-endoplasmic reticulum complex, has been 
shown to surround and permeate the MA of many organisms 
(reviewed in 14 and 33) including sea urchin eggs (10), Bom- 
byx mori spermatocytes (15), spider spermatocytes (52), bar- 
ley (t3), onion root tip (37), and HeLa (31) cells. It has been 
suggested that these membranes play a role in regulating the 
local ionic environment (see above), and also that they act as 
a barrier that blocks yolk granules, mitochondria, and other 
cytoplasmic organelles from entering the spindle. The mem- 
brane sheath surrounding the metaphase Xenos MA may also 
have an additional function: Since the spindle MTs in the 
MA of this organism appear to lack well-defined (polar) 
anchor points, the membrane components within and sur- 
rounding the spindle may stabilize all of the tetrads in a 
bipolar metaphase arrangement until fertilization, which may 
occur up to 14 d (16) after the spindle has formed. 
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search, Inc., grant 65027 (to C. L. Rieder) and by Biotechnological 
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FIGURE 7 TWO sections from a Xenos oocyte MA in the same (metaphase) stage as the nucleus pictured in Fig. 1L The NE has 
disappeared, the chorion (c) has reestablished itself, and the tetrads are aligned on a metaphase plate. Each tetrad is surrounded 
by a clear zone, and individual membranous chromosomal sheaths are impossible to delineate from the additional membrane 
elements within the spindle. MTs, which are more easily visualized at this magnification in cross-sections of metaphase nuclei 
(e.g., Fig. 8), are associated with the kinetochores (e.g., K). Each kinetochore stains more electron-opaque than the remainder of 
the chromosome. The asterisk in the upper left corner of B indicates a membrane whorl which is pictured, in the adjacent section, 
within the inset in B. Bar, 3.0 ~m. x 12,000. (Inset) Bar, 1.0 urn. x 13,500. 
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FIGURE 8 Electron micrograph of a section through a Xenos oocyte metaphase MA (cf. Fig. 1F). This MA has been cross- 
sectioned, and six tetrads plus one obvious kinetochore fiber (kt) are pictured within this section (cf. Fig. 5). Note that the 
kinetochores on chromosomes 1 and 5 are more electron-opaque than the remainder of the chromosome. Numerous spindle 
MTs can be seen in the region of the MA outl ined by the large arrowheads. The asterisks near the spindle periphery denote areas 
where membranes appear attached to one another by an electron-opaque material. Bar, 2.0 #m. x 15,500. (lower left inset) 
Higher magnification micrograph of kinetochore and nonkinetochore MTs. Bar, 0.5 /~m. x 18,750. (lower right inset) Phase- 
contrast light micrograph of a section through this nucleus. Note that the chorion (c) appears intact and contacts the MA via an 
invagination. × 920. 
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